16th Telecommunications forum TELFOR 2008 Serbia, Belgrade, November 25-27, 2008.

A Possible Secure Mobile Web Service

Goranbordevi¢, The Institute for Manufacturing banknotes and coins NBS, Milan Markovi, Banca
Intesa ad Beograd

and JAX-RPC clients invoke — access, consume oremak
Abstract — In this paper, a design and programming of use of — the services exposed by endpoints.

JAVA applications on mobile phones that securely gmect to
Web services are described. We considered a Web gee
scenario where mobile phone user produces a cryptaphic
signature in the JAVA application using the smart ard. This
smart card is generally considered in the paper buf main
intention is that this should be a PKI SIM smart cad. Data is
encrypted using a crypto MIDlet JAVA application installed
on mobile phone with CLDC configuration. The user use
XML signature to wrap a cryptographic signature into the
SOAP request and sends the request over to the retaoWeb

Application
Back-end Servers

i b
Web Server EJ
(Service Producer) |

Web Service
service endpoint implementation. Web service perfans Consurmer

request processing and sends SOAP response back tte

WSA (Web Service API) framework. WSA processes the Figure 1. J2ME Web Services in a Typical Web Servic
SOAP response and display the status to the mobileser on Architecture

his mobile phone. The work presented is related tohe EU

IST FP6 SWEB project (Secure, interoperable cross bder WSA, as a subset of JAX-RPC, only includes theo§et

m-services contributing towards a trustful European
cooperation with the non-EU member Western Balkan
countries) [1].

interfaces that are used to define Web servicatslielhis
makes sense because J2ME devices are not likely to
expose their own Web service endpoints. J2ME device
only expected to consume Web services exposed by

Keywords — Java mobile application, mobile phone with . . - o . o
Al PP P service endpoints. This scenario is depicted in Fig].

CLDC configuration, MIDlet, smart card, SOAP protocol,
SWEB, XML Signature, Web service.

| INTRODUCTION A Web service client running on

Java 2 Micro Edition (J2ME) is a runtime environien a J2ME device
for resource-constrained environments. J2ME indude
specific virtual machines, configurations and pdesfifor
various environments and needs. With an appropriate
configuration and profile, J2ME applications coube
executed within pagers, mobile phones, PDAs, get-to
boxes and automobile navigation systems, just totioe

some [2].
The Java Specification Request 172 (JSR 172) specif An endpoint exposing its We
standardized client-side technology to enable J2ME services

applications to consume remote services on typiesh
services architectures, as Fig. 1 illustrates [3].

JSR 172 defines a standardized API that J2ME elient
can use to invoke SOAP and XML-based Web services.
This API is in the form of an optional package §@ME,
and is referred to as Web Services APIs (WSA) &H.
WSA is actually a subset of the Java API for XMLsed
Remote Procedure Call (JAX-RPC) defined by JSR 101 Another Web service client
[4]. running on a J2ME device

JAX-RPC uses the popular concept of Web service
“endpoints” and “clients”. Endpoints expose Webviars

Goranbordevi¢, The Institute for Manufacturing banknotes andsoi

NBS, Pionirska 2, 11000 Beograd ~ Figure 2. Web service consuming services expose by
Milan Markovi¢, Banca Intesa ad Beograd, Bulevar Milutina Web service endpoint

Milankovi¢a 1c, 11070 Novi Beograd

850

Before we focus on the Java ME subset of JAX-RPC, Obfuscation process - One problem inherent to most
let's review the general concepts and elementstgbieal mobile devices is the limited amount of memory. with
JAX-RPC application (see Fig. 3). most any library you use, only a small portion ledé tode

is typically needed by your application. One commay

— Service Provider = to eliminate unused code, and at the same time ritake
—— Service Consumer e S more challenging to reverse engineer an applicat®mo
Java ME use a Java obfuscator.
Application Ties Reverse engineering of Java programs is not too
(Consumer) t difficult. As a matter of fact, there are free dexgilers that
Stubs :0{"" will do the work for you. Ta make it a litte more
T e challenging to reverse engineer applications, maaya
Redjuest t v developers use an obfuscator to rename classekpaset
JAX-REE e et Ve and fields. The intention of this renaming procesgo
Runtime | Response] Server
*— Return value, Void or Exception make the source more unreadable.
A side effect of the obfuscation process is thaicédn

of class file size. This is accomplished in twaqsteFirst, a

Figure 3 Elements of a Typical JAX-RPC Application lot of bytes can be saved by replacing names afsel

methods, and field names that are one or two ctexsam

When examining a JAX-RPC application, in our case dength. In addition, obfuscators will remove unustasses,
application based on Java ME, we should focus oeseth methods, and fields. The combination of these tteps
main areas of interest: the service consumer, ¢neice can significantly reduce the size of the final amation.
provider, and the network. We used open source obfuscator ProGuard.

The Service Consumerconsists of the application, the Security and Trust Services API (SATSA) - Security and
JAX-RPC stubs for the service of interest, and 1A&- Trust Services API is a new API that provides addal
RPC runtime. On Java ME the JAX-RPC stubs andmenti security capabilities to the J2ME CLDC platform. It
are based on the JSR 172 subset. The JAX-RPC atabsspecifies a collection of APIs that provide seguiind
proxies created from a web service descriptor thiust services for J2ME CLDC by integrating a Ségur
represent the remote service and that hide the leaibp Element (SE).
of data marshalling and interfacing with the JAX@RP The SE is a hardware or a software component in a
runtime. The JAX-RPC runtime is responsible fod2ME device. It provides the following features:
managing the remote invocations and the network® Secure storage to protect sensitive data.
operations. = Cryptographic operations.

The Service Providerconsists of the service classes that With these features, J2ME applications would be bl
are accessible through a web server and a SOAMmenghave secure key stores as well as encryption acrgtéon
There also is the Web Services Descriptor Languag@pabilities. These features could be used to geovi
(WSDL) description, an XML document that descrities Security services for applications such as e-paysnen
web service itself, the method signatures, andothding mobile commerce, etc. A SE can be: (1) deployed as
information. The web server, for example the Apachgmart card in wireless phones (e.g. SIM PKI caais)?2)
HTTP Server, provides the web transport, and th&RSO can be implemented by a handset itself (e.g., eddukd
engine, for example Apache's Axis, provides the RXC chips or special security features of the hardwarg)3)
SOAP runtime for service invocation. The serviestare may be entirely implemented in software [7].
proxies for the actual service classes, and agonsible
for handling details such as data marshalling. 3¢éwice ~ The support for cryptographic smart cards is of
classes provide the actual service implementa8n [particular interest to developers writing J2ME aggtions

for smart phones. Keys and certificates can beedtan

The Network represents the Web, the transporihe smart card and data can be signed without fivate
(typically HTTP), and the SOAP-encoded messages. key ever leaving the card. High-end smart cardsearper

resistant and provide authentication schemes, s@agh
II. IMPLEMENTATION ASPECTS requiring a PIN or a password before access tcsihart
card is granted. This way security is dependentthan
smart card not being compromised. Private keys aofo n
have to be stored on diverse insecure clients, ligab
vendors to focus on keeping the smart card secora f
physical tempering and, just as important, smard &I

With the ever present concern over security, sofw
applications must consider how to secure confidédtita.
A mobile application is not immune from privacy cenns.
In fact, mobile devices and their software applaahave
special considerations given that most people ctimege

devices wherever they go exploitation. T)
Bouncy Castle APIs - In order to encrypt sensitive data SATSA APIs - The SATSA specification defines for

we used Bouncy Castle Cryptography APls BouncyléasApls’ SATSA-APDU, SATSA-JCRMI, SATSA-PKI, and
. y yptography Ars. ! SATSA-CRYPTO. The first two APIs add functionalftyr
is an open source Java API for encrypting and qiicry

data. There is a lightweight package that is slatdbr smart card Interaction. SATSA-APDU enables

o ; communication with smart cards using the Applicatio
MIDP appllcatmn_s where only a fraction of the Alll be Protocol Data Unit (APDU) protocol defined by the
used at any one time.

851

ISO7816-4 specification. SATSA-JCRMI enables higla.
level communication with smart cards through thgala
Card Remote Method Invocation Protocol (JCRMI).

SATSA-PKI enables applications to request digital
signatures from an SE, hence providing authentinaind
possibly non-repudiation by using keys stored asmart
card. Client certificate management is also pravidy
SATSA-PKI, giving an application the opportunity aold
or remove certificates from an SE. The most intergs 4.
part of the certificate management is the posgibild
request generation of a new key-pair and then m®du
Certificate Signing Request. The fact the clienhagates 5.
its own keys is one of the key factors needed fpstt
non-repudiation in a system. Note that key genamats
dependent on the SE, the SE might not support kéy
generation at all. Hence, the SE must be chosdnaaite,
considering the application requirements.

SATSA-CRYPTO offers cryptographic tools like7.
message digests, digital signature verificatiom, a@phers.
The API enables applications to store data enctypted
signed on a mobile device, ensuring both confiddgti
and integrity. Applications that require securerage of
highly sensitive information can therefore be raadi. Note
that it is up to the developer to decide which eighand
digest algorithms to include. The SATSA specifioati

3.

The MIDlet hands over the request to a set of ecddn
stub classes that use four technologies: XML signeat
Cryptography, SATSA/Java Card, and WSA to author a
secure reserve SOAP request that wraps user
authentication data.

Enhanced stub classes use cryptography and SATSA to
fetch all cryptographic support required by theusec
SOAP request.

SATSA, in turn uses a Java Card application to
compute cryptographic signature value over User_A's
SOAP request.

Next, enhanced stub classes use the XML signature
support to author a complete XML signature and wrap
the signature in the SOAP request.

Enhanced stub classes use WSA framework to send the
request over to the remote Web service endpoint
implementation.

The remote Web service implementation will need to
transform the incoming SOAP request before
processing. A transformation module hosted in the
remote Web service will do the job.

@,

recommends 3DES and AES as symmetric ciphers, RSA
asymmetric cipher, and SHA-1 as the digest algarith
SHA1withRSA is the recommended algorithm for digita

J2ME device

signatures [7].

I1l. A POSSIBLE WEB SERVICE SCENARIO

Secure Municipal MIDlet

WSA uses the idea of stub classes, so other temgmol
components such as cryptography, XML signature an

B

Enhanced stub classed

Java Card technology have to fit into WSA stub s#as
[5]. The Java Card technology provides a means
securely storing confidential information, privatend

DI

signature

XML S 3

SATSA WoA

framework

Crypto-
graphy

support

secret keys. You can use the Java Card technotogywd
basic purposes:

= to securely store a cryptographic key;
to implement signature calculation algorithm.

Suppose User_A is a Java Card user, who wants to
produce a cryptographic signature using the Javd.Gte
will need to provide a username and password while
accessing his Java Card. The username-passworgvifair
work only User_A’'s Java Card. Therefore, if a hacke
steals his Java Card, the hacker will also neddtav the
username-password pair for that specific Java CHnis
type of security is sometimes called dual fact@gusity.

In order to communicate with a Java Card, a J2ME
device will need an API called Security and Trustv&es
APl (SATSA). Another important technology for
developing secure web service is XML signature. ¥an
use XML signature to wrap a cryptographic signature
within an XML message.

A possible secure mobile web service scenario declu
following steps to WSA security (see Fig. 4):

1. Suppose User_A, a municipal resident, wants tosscce
the municipal document exchange service to redqoest
issuance of residence certificate. User_A’'s J2ME ce

O

A Java Card
application

©

A4

Remote Web
service endpoint

Transformation
module @

®

Municipal
Web service

phone has a secure Municipal MIDlet running. So hé-igure 4. Security components for wireless acae§¥eb

will invoke the MIDlet.

852

services

8. The transformation module will hand over the requeshis project and the authors would like to acknalgke all

to the actual Web service implementation. SWEB partners.
9. The Web service will perform request processing.
10.The web service will send certification document DISCLAIMER

issuance status in the form of a SOAP responsetoack this reseacrh outlined in this paper has beenrtakin

the WSA framework. with the financial assistance of the European Conitywu
11.Thel _WSA will process.the SOAP response, extragh. yiews expressed herein are those of SWEB
certification status and display the same to therUS. ongortium and can therefore is no way be takeeftect
the official opinion of the European Commision. The
information in this document is provided as is amu
Web services are a good way to allow smaller daevicguarantee or warranty is given to state thatrfe@rmation
and applications to use the processing power dlailan is fit for any particular purpose. The user therefases the
larger machine. Java 2 Micro Edition (J2ME) is atime information at their sole risk and liability.
environment for resource-constrained environmemtse
Java Specification Request 172 (JSR 172) specifies REFERENCES
standardized client-side technology to enable J2M]
applications to consume remote services. WSA uses 2]

IV. CONCLUSION

SWEB Project Homepage, http://www.sweb-project.org
O. Kolsi, T. Virtanen, “MIDP 2.0 Security Enhancems,

idea of stub classes, so other technology compsrearth Proceedings of the $7Hawaii International Conference on System
as cryptography, XML signature and Java Card telcigyo Sciences, 2004.
have to fit into WSA stub classes [3] C. E. Ortiz, “Introduction to J2ME Web Services”pl 2004,

In this work. a possible secure mobile web service http://developers.sun.com/techtopics/mobility/eguistles/wsal/.
scenario is considered. In the scenario we usddée of IBM Workplace Client Technology Micro Edition Veosi 5.7.1:

b cl h hnol h Application Development and Case Study, Redbookg J2005,
stub classes, so other technology components s8Ch & g4546496 pdf, www.ibm.comiredbooks.

cryptography, XML signature and Java Card technplogs] g. siddiqui, “Building a secure SOAP client for JEMPart 1:
have to fit into WSA stub classes. We consideregl th Exploring Web Services APIs (WSA) for J2ME*, 16 Janos,

scenario where private asymmetric keys and digital http://www-128.iom.com/developerworks/edu/
certificates stored on the smart card and datebem]gned [6] C. E. Ortiz, “Understanding the Web Services Subgdtfor Java

without the private key ever leaving the card. ME March . 2006, htt'p://developers.sun.com/techtoplcs/
mobility/midp/articles/webservices/.

[7] MIDP 2.0: SATSA-APDU API Developer's Guide, versidnO,
ACKNOWLEDGEMENT February 2, 2007. Forum NokiaHandbook. Mill Valley, CA:
. University Sci , 2007.
This work is being carried out in the context lo¢ iST niversity science
international cooperation project SWEB (044979).isTh
paper is based on the work performed within theedrof

853

