

Abstract — In this paper, a design and programming of

JAVA applications on mobile phones that securely connect to
Web services are described. We considered a Web service
scenario where mobile phone user produces a cryptographic
signature in the JAVA application using the smart card. This
smart card is generally considered in the paper but a main
intention is that this should be a PKI SIM smart card. Data is
encrypted using a crypto MIDlet JAVA application installed
on mobile phone with CLDC configuration. The user uses
XML signature to wrap a cryptographic signature into the
SOAP request and sends the request over to the remote Web
service endpoint implementation. Web service performs
request processing and sends SOAP response back to the
WSA (Web Service API) framework. WSA processes the
SOAP response and display the status to the mobile user on
his mobile phone. The work presented is related to the EU
IST FP6 SWEB project (Secure, interoperable cross border
m-services contributing towards a trustful European
cooperation with the non-EU member Western Balkan
countries) [1].

Keywords — Java mobile application, mobile phone with
CLDC configuration, MIDlet, smart card, SOAP protocol,
SWEB, XML Signature, Web service.

I. INTRODUCTION

Java 2 Micro Edition (J2ME) is a runtime environment
for resource-constrained environments. J2ME includes
specific virtual machines, configurations and profiles for
various environments and needs. With an appropriate
configuration and profile, J2ME applications could be
executed within pagers, mobile phones, PDAs, set-top
boxes and automobile navigation systems, just to mention
some [2].

The Java Specification Request 172 (JSR 172) specifies
standardized client-side technology to enable J2ME
applications to consume remote services on typical web
services architectures, as Fig. 1 illustrates [3].

JSR 172 defines a standardized API that J2ME clients
can use to invoke SOAP and XML-based Web services.
This API is in the form of an optional package for J2ME,
and is referred to as Web Services APIs (WSA) for J2ME.
WSA is actually a subset of the Java API for XML-based
Remote Procedure Call (JAX-RPC) defined by JSR 101
[4].

JAX-RPC uses the popular concept of Web service
“endpoints” and “clients”. Endpoints expose Web services

Goran ðorñević, The Institute for Manufacturing banknotes and coins

NBS, Pionirska 2, 11000 Beograd
Milan Marković, Banca Intesa ad Beograd, Bulevar Milutina

Milankovića 1c, 11070 Novi Beograd

and JAX-RPC clients invoke – access, consume or make
use of – the services exposed by endpoints.

Figure 1. J2ME Web Services in a Typical Web Service
Architecture

WSA, as a subset of JAX-RPC, only includes the set of

interfaces that are used to define Web service clients. This
makes sense because J2ME devices are not likely to
expose their own Web service endpoints. J2ME devices are
only expected to consume Web services exposed by
service endpoints. This scenario is depicted in Fig. 2 [5].

Figure 2. Web service consuming services exposed by a
Web service endpoint

A Possible Secure Mobile Web Service

Goran ðorñević, The Institute for Manufacturing banknotes and coins NBS, Milan Marković, Banca
Intesa ad Beograd

An endpoint exposing its Web
services

A Web service client running on
a J2ME device

Another Web service client
running on a J2ME device

16th Telecommunications forum TELFOR 2008 Serbia, Belgrade, November 25-27, 2008.

850

Before we focus on the Java ME subset of JAX-RPC,
let's review the general concepts and elements of a typical
JAX-RPC application (see Fig. 3).

Figure 3. Elements of a Typical JAX-RPC Application

When examining a JAX-RPC application, in our case an

application based on Java ME, we should focus on three
main areas of interest: the service consumer, the service
provider, and the network.

The Service Consumer consists of the application, the
JAX-RPC stubs for the service of interest, and the JAX-
RPC runtime. On Java ME the JAX-RPC stubs and runtime
are based on the JSR 172 subset. The JAX-RPC stubs are
proxies created from a web service descriptor that
represent the remote service and that hide the complexity
of data marshalling and interfacing with the JAX-RPC
runtime. The JAX-RPC runtime is responsible for
managing the remote invocations and the network
operations.

The Service Provider consists of the service classes that
are accessible through a web server and a SOAP engine.
There also is the Web Services Descriptor Language
(WSDL) description, an XML document that describes the
web service itself, the method signatures, and the binding
information. The web server, for example the Apache
HTTP Server, provides the web transport, and the SOAP
engine, for example Apache's Axis, provides the JAX-RPC
SOAP runtime for service invocation. The service ties are
proxies for the actual service classes, and are responsible
for handling details such as data marshalling. The service
classes provide the actual service implementation [6].

The Network represents the Web, the transport
(typically HTTP), and the SOAP-encoded messages.

II. IMPLEMENTATION ASPECTS

 With the ever present concern over security, software
applications must consider how to secure confidential data.
A mobile application is not immune from privacy concerns.
In fact, mobile devices and their software application have
special considerations given that most people carry these
devices wherever they go.

Bouncy Castle APIs - In order to encrypt sensitive data
we used Bouncy Castle Cryptography APIs. Bouncy Castle
is an open source Java API for encrypting and decrypting
data. There is a lightweight package that is suitable for
MIDP applications where only a fraction of the API will be
used at any one time.

Obfuscation process - One problem inherent to most
mobile devices is the limited amount of memory. As with
most any library you use, only a small portion of the code
is typically needed by your application. One common way
to eliminate unused code, and at the same time make it
more challenging to reverse engineer an application, is to
use a Java obfuscator.

Reverse engineering of Java programs is not too
difficult. As a matter of fact, there are free decompilers that
will do the work for you. Ta make it a little more
challenging to reverse engineer applications, many Java
developers use an obfuscator to rename classes, methods,
and fields. The intention of this renaming process is to
make the source more unreadable.

A side effect of the obfuscation process is the reduction
of class file size. This is accomplished in two steps. First, a
lot of bytes can be saved by replacing names of classes,
methods, and field names that are one or two characters in
length. In addition, obfuscators will remove unused classes,
methods, and fields. The combination of these two steps
can significantly reduce the size of the final application.
We used open source obfuscator ProGuard.
 Security and Trust Services API (SATSA) - Security and
Trust Services API is a new API that provides additional
security capabilities to the J2ME CLDC platform. It
specifies a collection of APIs that provide security and
trust services for J2ME CLDC by integrating a Security
Element (SE).

The SE is a hardware or a software component in a
J2ME device. It provides the following features:

� Secure storage to protect sensitive data.
� Cryptographic operations.
With these features, J2ME applications would be able to

have secure key stores as well as encryption and decryption
capabilities. These features could be used to provide
security services for applications such as e-payments,
mobile commerce, etc. A SE can be: (1) deployed as a
smart card in wireless phones (e.g. SIM PKI cards) or, (2)
can be implemented by a handset itself (e.g., embedded
chips or special security features of the hardware) or, (3)
may be entirely implemented in software [7].

The support for cryptographic smart cards is of
particular interest to developers writing J2ME applications
for smart phones. Keys and certificates can be stored on
the smart card and data can be signed without the private
key ever leaving the card. High-end smart cards are temper
resistant and provide authentication schemes, such as
requiring a PIN or a password before access to the smart
card is granted. This way security is dependent on the
smart card not being compromised. Private keys do not
have to be stored on diverse insecure clients, enabling
vendors to focus on keeping the smart card secure from
physical tempering and, just as important, smart card API
exploitation.

SATSA APIs - The SATSA specification defines for
APIs, SATSA-APDU, SATSA-JCRMI, SATSA-PKI, and
SATSA-CRYPTO. The first two APIs add functionality for
smart card interaction. SATSA-APDU enables
communication with smart cards using the Application
Protocol Data Unit (APDU) protocol defined by the

851

ISO7816-4 specification. SATSA-JCRMI enables high
level communication with smart cards through the Java
Card Remote Method Invocation Protocol (JCRMI).

SATSA-PKI enables applications to request digital
signatures from an SE, hence providing authentication and
possibly non-repudiation by using keys stored on a smart
card. Client certificate management is also provided by
SATSA-PKI, giving an application the opportunity to add
or remove certificates from an SE. The most interesting
part of the certificate management is the possibility to
request generation of a new key-pair and then produce a
Certificate Signing Request. The fact the client generates
its own keys is one of the key factors needed to support
non-repudiation in a system. Note that key generation is
dependent on the SE, the SE might not support key
generation at all. Hence, the SE must be chosen with care,
considering the application requirements.

SATSA-CRYPTO offers cryptographic tools like
message digests, digital signature verification, and ciphers.
The API enables applications to store data encrypted and
signed on a mobile device, ensuring both confidentially
and integrity. Applications that require secure storage of
highly sensitive information can therefore be realized. Note
that it is up to the developer to decide which ciphers and
digest algorithms to include. The SATSA specification
recommends 3DES and AES as symmetric ciphers, RSA an
asymmetric cipher, and SHA-1 as the digest algorithm.
SHA1withRSA is the recommended algorithm for digital
signatures [7].

III. A POSSIBLE WEB SERVICE SCENARIO

WSA uses the idea of stub classes, so other technology
components such as cryptography, XML signature and
Java Card technology have to fit into WSA stub classes
[5]. The Java Card technology provides a means of
securely storing confidential information, private and
secret keys. You can use the Java Card technology for two
basic purposes:

� to securely store a cryptographic key;
� to implement signature calculation algorithm.
Suppose User_A is a Java Card user, who wants to

produce a cryptographic signature using the Java Card. He
will need to provide a username and password while
accessing his Java Card. The username-password pair will
work only User_A’s Java Card. Therefore, if a hacker
steals his Java Card, the hacker will also need to know the
username-password pair for that specific Java Card. This
type of security is sometimes called dual factory security.

In order to communicate with a Java Card, a J2ME
device will need an API called Security and Trust Services
API (SATSA). Another important technology for
developing secure web service is XML signature. You can
use XML signature to wrap a cryptographic signature
within an XML message.

A possible secure mobile web service scenario include
following steps to WSA security (see Fig. 4):
1. Suppose User_A, a municipal resident, wants to access

the municipal document exchange service to request for
issuance of residence certificate. User_A’s J2ME cell
phone has a secure Municipal MIDlet running. So he
will invoke the MIDlet.

2. The MIDlet hands over the request to a set of enhanced
stub classes that use four technologies: XML signature,
Cryptography, SATSA/Java Card, and WSA to author a
secure reserve SOAP request that wraps user
authentication data.

3. Enhanced stub classes use cryptography and SATSA to
fetch all cryptographic support required by the secure
SOAP request.

4. SATSA, in turn uses a Java Card application to
compute cryptographic signature value over User_A’s
SOAP request.

5. Next, enhanced stub classes use the XML signature
support to author a complete XML signature and wrap
the signature in the SOAP request.

6. Enhanced stub classes use WSA framework to send the
request over to the remote Web service endpoint
implementation.

7. The remote Web service implementation will need to
transform the incoming SOAP request before
processing. A transformation module hosted in the
remote Web service will do the job.

Figure 4. Security components for wireless access to Web
services

J2ME device

Secure Municipal MIDlet

Enhanced stub classed

 XML
signature
support

Crypto-
graphy

SATSA
WSA

framework

A Java Card
application

4

Remote Web
service endpoint

8

Municipal
Web service

9

Transformation
module

7

2

10 6

1 11

5 3

852

8. The transformation module will hand over the request
to the actual Web service implementation.

9. The Web service will perform request processing.
10. The web service will send certification document

issuance status in the form of a SOAP response back to
the WSA framework.

11. The WSA will process the SOAP response, extract
certification status and display the same to the User_A.

IV. CONCLUSION

Web services are a good way to allow smaller devices
and applications to use the processing power available on
larger machine. Java 2 Micro Edition (J2ME) is a runtime
environment for resource-constrained environments. The
Java Specification Request 172 (JSR 172) specifies
standardized client-side technology to enable J2ME
applications to consume remote services. WSA uses the
idea of stub classes, so other technology components such
as cryptography, XML signature and Java Card technology
have to fit into WSA stub classes

In this work, a possible secure mobile web service
scenario is considered. In the scenario we use the idea of
stub classes, so other technology components such as
cryptography, XML signature and Java Card technology
have to fit into WSA stub classes. We considered the
scenario where private asymmetric keys and digital
certificates stored on the smart card and data can be signed
without the private key ever leaving the card.

ACKNOWLEDGEMENT

 This work is being carried out in the context of the IST
international cooperation project SWEB (044979). This
paper is based on the work performed within the context of

this project and the authors would like to acknowledge all
SWEB partners.

DISCLAIMER

 This reseacrh outlined in this paper has been undertaken
with the financial assistance of the European Community.
The views expressed herein are those of SWEB
Consortium and can therefore is no way be taken to reflect
the official opinion of the European Commision. The
information in this document is provided as is and no
guarantee or warranty is given to state that the information
is fit for any particular purpose. The user therefore uses the
information at their sole risk and liability.

REFERENCES

[1] SWEB Project Homepage, http://www.sweb-project.org
[2] O. Kolsi, T. Virtanen, “MIDP 2.0 Security Enhancements“,

Proceedings of the 37th Hawaii International Conference on System
Sciences, 2004.

[3] C. E. Ortiz, “Introduction to J2ME Web Services”, April 2004,
http://developers.sun.com/techtopics/mobility/apis/articles/wsa/.

[4] IBM Workplace Client Technology Micro Edition Version 5.7.1:
Application Development and Case Study, Redbook, June 2005,
sg246496.pdf, www.ibm.com/redbooks.

[5] B. Siddiqui, “Building a secure SOAP client for J2ME, Part 1:
Exploring Web Services APIs (WSA) for J2ME“, 16 Jun 2006,
http://www-128.ibm.com/developerworks/edu/

[6] C. E. Ortiz, “Understanding the Web Services Subset API for Java
ME“, March 2006, http://developers.sun.com/techtopics/
mobility/midp/articles/webservices/.

[7] MIDP 2.0: SATSA-APDU API Developer’s Guide, version 1.0,
February 2nd, 2007. Forum Nokia, Handbook. Mill Valley, CA:
University Science, 2007.

853

